If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+5y-13=0
a = 8; b = 5; c = -13;
Δ = b2-4ac
Δ = 52-4·8·(-13)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-21}{2*8}=\frac{-26}{16} =-1+5/8 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+21}{2*8}=\frac{16}{16} =1 $
| -5w=-18 | | 25x=465 | | -3x-(-4x+24)=-17 | | -2(2x+3)=-(x+1)-2 | | -12.3r-18.13=5.36-9.4r | | 3x÷9=60 | | 13z-(-3z)-(-11)=-5 | | “9j+4=13j-6 | | 23=5y-4(2-2y) | | 8r-27=21 | | 15.50-3=p | | 11k−8k=3 | | -3u+2=-10u+30= | | -13h+-15h-(-15)=-13 | | 2x=4-9x/18 | | 2(k-11)-6.62=1.38 | | -h+6h=10 | | ((3x+10)/5)+(3/4)=((-7x)/5) | | 3(u-9)-9=6 | | 9=19y+51 | | 15p-(-2p)-(-11)=-6 | | x^2/3+13=-3 | | -2r=-11-13r | | 7p=-10p | | -2r=-11−13r | | -k=3k-16 | | 23=1+y | | 4x+20=4x+30 | | -k=3k−16 | | 9n+7+n+3=9(1+n)+11(n-9) | | H=16t^2+84t | | 4(8x-5)-2x=2x-4(5-3x) |